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Abstract
For the Friedrichs model, obtained as a one-dimensional ε-perturbation Pε

of the orthogonal sum of the momentum P = i d
dx

and a finite Hermitian
matrix: P ⊕ A −→ Pε, the scattering matrix is presented as Sε(p) =
[I + iεM(p)]−1[I − iεM(p)]. The rational Nevanlinna-class Krein–Weyl
function M is associated with the operator A and has poles at the eigenvalues
of A. It is proven that for any eigenvalue α0 of A there exists an intermediate
operator Pε

0 , which is constructed as a one-dimensional perturbation P0
ε of the

orthogonal sum P ⊕Aε
0 of the momentum and an appropriate one-dimensional

operator—a solvable model, which plays the role of an intermediate operator
in the scattering problem to the pair (Pε,P). The scattering matrix S0

ε to the
pair

(
Pε,P0

ε

)
is an analytic function of ε and the total scattering matrix to the

pair (Pε,P) can be factorized as a product
Sε(p) = S0

ε S
ε
0,

where Sε
0 is the scattering matrix to the pair Pε

0 ,P . It is represented by a
single Blaschke factor with a pole and zero approaching α0 when ε → 0. The
non-analytic factor Sε

0 describes creation of the resonance from the eigenvalue
α0 of the operator A.

PACS numbers: 02.30.Sa, 02.70.Hm, 03.65.Db
Mathematics Subject Classification: 47A55, 81U55

1. Introduction

The standard technique of the analytic perturbation theory is developed for additive
perturbations Aε = A + εB of operators with discrete spectrum, see, for instance, [1]. It
is well known, see [2], that for operators with continuous spectrum the analytic perturbation
procedure is convergent only for small values of the perturbation parameter ε—‘below the
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threshold of creation of resonances’, but cannot be extended beyond this limit. Poincaré
connected the divergence of the analytic perturbation procedure in celestial mechanics with
resonances, which appear in [3] as small denominators. Following Poincaré, Prigogine
discussed the divergence of the perturbation procedure on a continuous spectrum in connection
with irreversibility of dynamics, and he even tried to attract the attention of specialists to the
importance of extending the range of application of the analytic perturbation technique beyond
the natural limit. He also attempted to find an intermediate operator and use it as a first step—a
sort of a ‘jump-start’—in the analytic perturbation procedure for operators with continuous
spectrum. He assumed that there may exist an operator Cε in the commutant of the non-
perturbed operator, see [4–8], such that the analytic perturbation procedure is convergent
for the pair (Cε,Aε). No such intermediate operator was found, and the idea of the jump-
start was abandoned. It appeared again in scattering problems on Quantum Networks, see
[9]. The simplest quantum network, the Quantum Switch, see [10, 11], is constructed as a
circular quantum well �0 with four straight wires �s width δ, attached to it orthogonally. The
intermediate operator for the scattering problem on the quantum network can be constructed
via Glazman’s ‘splitting’ by imposing a semi-transparent boundary condition on some sections
of the semi-infinite wires. This boundary condition splits the original Hamiltonian into two
parts: the trivial part in open channels and the non-trivial part on the joining of closed channels
and the compact part of the network. This split operator plays the role of the intermediate
operator for the quantum network. In contrast to the assumption of Prigogine, this operator does
not commute with the non-perturbed operator, and, more importantly, it is defined locally—
only for the selected spectral band, where the multiplicity of the continuous spectrum is
constant.

For operators with Lebesgue’s absolute continuous spectrum (constant multiplicity) the
above construction of the intermediate is not applicable. But the question of convergence of
the analytic perturbation procedure is actual: the standard procedure of analytic perturbation
theory suggested in [2] for the additive perturbation of the momentum operator (‘Friedrichs
model’, see for instance [13–19])

Pε = P + εA

is convergent only for small values of the perturbation parameter ε. Extension of the
perturbation procedure beyond the threshold of creation of resonances requires the non-
analytic techniques of the mathematical scattering theory, see, for instance, [20–22].

In this paper, we describe an observation which probably will help to extend the technique
of jump-start to general operators with Lebesgue spectrum, via constructing for them a
modified analytic perturbation procedure in two steps:

P −→ P0
ε −→ Pε.

In the first step, the scattering matrix consists of a single Blaschke factor which is non-analytic
with respect to ε. The scattering matrix in the second step is analytic with respect to ε.

Our paper has the following plan. In section 2 we describe our version of the Friedrichs
model with non-trivial ‘inner structure’ and calculate the corresponding scattering matrix in
terms of the corresponding Krein–Weyl function defined by the spectral characteristics of the
inner Hamiltonian A. In section 3 we explore the distribution of resonances and factorize
the corresponding scattering matrix as a product of the non-analytic factor Sε

0 and an analytic
factor S0

ε and interpret Sε
0 as the scattering matrix of the intermediate operator Pε

0 with respect
to P .

In the appendix, we quote the Gohberg–Sigal theorem on the logarithmic residue, which
serves the foundation of the factorization of the scattering matrix.
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It is interesting to see that resonances appear as an essential detail of our construction,
in agreement with the anticipation of Poincaré [3] and Prigogine. But, unfortunately, the
construction of the intermediate operator in the first step requires exact data of the resonance.
In Friedrichs model, we may obtain these data via solving some algebraic equation. But in the
general case, substitution of the exact data by the approximate data destroys the analyticity of
the complementary scattering matrix obtained in the second step.

2. Friedrichs model with an inner structure

We use in this paper the Friedrichs model with an inner structure, which is obtained as a
perturbation Pβ , see below (2), of the orthogonal sum P ⊕ A of the momentum P = 1

i
d

dx
in

L2(R,E), dim E = m < ∞ and a finite-dimensional self-adjoint operator acting in the space
K, A : K → K , dim K = k < ∞.

We construct Pβ via the symplectic operator extension procedure, see [23], beginning
from restriction of the momentum P → P0 onto the domain D0 = W

1,0
2 (R,E) of all smooth

functions taking values in E and vanishing at the origin. The operator P0 is symmetric, with
deficiency indices (m,m),m = dim E. The corresponding adjoint operator P+

0 is defined on
W 1

2 (R−) ⊕ W 1
2 (R+), without any boundary conditions at the origin. The boundary form, see for

instance [24–26] of the adjoint operator J (u, v) = 〈P+
0 u, v

〉− 〈u,P+
0 v
〉 = i[uv̄(0+) − uv̄(0−)]

can be represented in terms of the corresponding symplectic variables ξ±,

ξu
+ = u(0+) + u(0−)

2
, ξu

− = i[u(0+) − u(0−)]

as

Jp(u, v) = 〈ξu
−, ξ v

+

〉
E

− 〈ξu
+ , ξ̄ v

−
〉
E
. (1)

A version of operator extension theory for non-densely defined operators was developed
in [27]. The symplectic form of it is described in [26, 28]. The main obstacle to the
extension construction procedure in the finite-dimensional case—the absence of the adjoint
operator—is avoided by reducing the construction of the extension onto the defect—the sum
of deficiency subspaces Ni = N,N−i = A+iI

A−iI N , dim N = n � k/2, if Ni ∩ N−i = 0, which
is automatically fulfilled if n = 1. We derive an expression for the scattering matrix in the
case when dim N = n � k/2. In fact, the derived expression for the scattering matrix is valid
also in the case dim K = k = 1, see [31, 32], and it can be verified by a direct calculation
in our case too. We use the explicit formula for the scattering matrix in the case k = 1 in
section 3, theorem 3.4.

The restricted operator is defined on the non-dense domain DA0 = 1
A−iI K �N . Choosing

an orthogonal basis es ∈ N = Ni and the corresponding basis ês = A+iI
A−iI es ∈ N−i , we

introduce a new basis in defect D = N + N−i :

W +
s = es + ês

2
= A

A − iI
es , W−

s = es − ês

2i
= − 1

A − iI
es .

Then the elements from the defect are uniquely presented as linear combinations: ud =
A

A−ipI
η+ − 1

A−ipI
η−, where

η+ =
∑

s

ηs
+es , η− =

∑
s

ηs
−es , η± ∈ N.

The formal adjoint operator A+ is defined on the defect as

A+es = −ies , A+ês = iês
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or

A+W +
s = W−

s , A+W−
s = −W +

s .

Lemma 2.1 [24, 28]. The boundary form of the formal adjoint operator is calculated in terms
of symplectic variables ηu

±, ηv
± as

JA(u, v) = 〈A+u, v〉 − 〈u,A+v〉 = 〈ηu
+, η

v
−
〉− 〈ηu

−, ηv
+

〉
and it depends only on the parts of the vectors u, v in the defect.

Consider the orthogonal sum P0 ⊕ A0 of the restricted operators, and construct a Lagrangian
plane Lβ parametrized by the Hermitian matrix B connecting the symplectic coordinates ξ±
of the ‘outer’ component with the symplectic coordinates η± of the ‘inner’ component

B =
(

β00 β01

β10 β11

)
with elements β+

10 = β01 ∈ Cm × Cn, β00 ∈ Cm × Cm, β11 ∈ Cn × Cn. In the classical case
when dim E = 1 the scattering matrix is a scalar function. The stationary scattering matrix
is unitary on the real axis. Though the final result, theorem 3.4, for the one-dimensional
deficiency subspaces, is most interesting, we continue our analysis in general case, referring
to the one-dimensional case if necessary.

Theorem 2.2. The joint boundary form Jp(u, v) + JA(u, v) vanishes on the Lagrangian plane
Lβ described by the equation(

ξ−
η+

)
= B

(
ξ+

η−

)
. (2)

This Lagrangian plane defines the corresponding self-adjoint extension Pβ of P0 ⊕ A0.

The constructed operator Pβ has absolutely continuous spectrum multiplicity m on the
interval (−∞,∞). The corresponding eigenfunctions Ψ have two components: in the
‘outer’ space L2(R,E) and in the inner space K,Ψ = {�0, �1}. They fulfil the adjoint
homogeneous equations and the above boundary conditions (2). The symplectic coordinates
η± of the solution are connected via the corresponding Krein function: (n×n) matrix function
M(p) = P

I+pA

A−pI
P , where P is the orthogonal projection P = P + : K → N , see [29, 23]:

η− = −M(p)η+.

The Krein function of the inner operator A0 is an abstract analogue of the Weyl–Titchmarsh
function, which is an important tool in spectral theory of differential operators, see [30].
Further, we call it Krein–Weyl function. It belongs to Nevanlinna class (i.e., it is analytic and
has a positive imaginary part in the upper half-plane Im p > 0). Then, we present the outer
component of the ‘incoming’ eigenfunction by the ansatz

�0(x, ν) =
{

eipxν for x < 0,

eipxSν for x > 0,
(3)

and the inner component defined as

�1(ν) = A + iI

A − pI
η+(ν), (4)

with S, η+(ν) to be found from the above boundary condition (2). We can rewrite the
equation (2) as(

i(Sν − ν)

η+(ν)

)
=
(

β00 β01

β10 β11

)(
S+1

2 ν

−M(p)η+(ν)

)
,
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hence η+(ν) = β10
I+S

2 ν − β11Mη+(ν) and

i(S − 1)ν = [β00 − β01M(1 + β11M)−1β01]
S + I

2
ν

and

ην = 1

I + β11M
β10

I + S

2
ν.

This implies the following expression for the scattering matrix S = Sβ(p):

Theorem 2.3. The scattering matrix defined as the transmission coefficient S in the exterior
component of the scattered waves (3) is represented as

Sβ(p) = iI + 1
2 [β00 − β01M(I + β11M)−1β10]

iI − 1
2 [β00 − β01M(I + β11M)−1β10]

. (5)

The scattered waves of the perturbed operator are defined by (3) with S = Sβ(p).

Remark. The perturbed momentum operator Pβ acting in extended space L2(R,E) ⊕ K ,
is unitary equivalent to P. This unitary equivalence is defined by the corresponding wave
operators, transforming the non-perturbed scattered waves into the perturbed ones

W− eipxν =
(

�0

�1

)
, Pβ = W−PW +

−.

The same operators can transform the multiplication operator Q : u −→ xu into

Qβ = W−QW +
−,

acting in the extended space, such that the pairPβ,Qβ fulfils the same commutation relations as
P,Q. This fact permits us to introduce the corresponding creation and annihilation operators,
coherent states and other standard objects. We postpone discussion of this matter to the
forthcoming paper.

Remark 2. If B = 0, then S = 1, which corresponds to the non-perturbed operator. But
it is impossible to construct an analytic (with respect to the perturbation parameters βil)
branch of eigenfunctions �ν(p, β) of the perturbed operator for any p that coincides with the
eigenfunction eipxν of the non-perturbed operator at B = 0. In the following section, we
will suggest a special perturbation procedure which allows us to overcome this basic difficulty
locally, near a certain point (p0, 0) in the space (p, β) based on the introduction of a special
intermediate operator.

Generally, the above formula (5) produces an expression for the scattering matrix with
generally non-trivial asymptotic behaviour when p → ∞:

Sβ(p) → iI + 1
2 [β00 − β01(−PAP)[I + β11(−PAP)]−1β10]

iI − 1
2 [β00 − β01(−PAP)[I + β11(−PAP)]−1β10]

	= I.

Theorem 2.4. The scattering matrix has the ‘natural’ asymptotic behaviour at infinity,
Sβ(p) → I , if and only if [β00 − β01(−PAP)(1 + β11(−PAP))−1β10] = 0. In particular, the
scattering matrix tends to I at infinity if

β11 = 0 and β00 + β01PAPβ10 = 0. (6)

If the boundary parameters are selected such that the condition (6) is fulfilled, then the
corresponding scattering matrix is represented as a finite Blashke–Potapov product, see
[33, 34], with zeros (resonances) in the upper half-plane Im p > 0.
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The proof is based on the decomposition

M(p) = −PAP + P
I + A2

A − pI
P := a + m(p),

with the Nevanlinna-class matrix function m tending to 0 at infinity. In particular, the scattering
matrix tends to I at infinity if β11 = 0 and β00 + β01PAPβ10 = 0. In this case, the expressions
in brackets in both numerator and denominator are Nevanlinna functions which tend to 0 at
infinity and the scattering matrix is unitary on the real axis. To prove the Blashke–Potapov
decomposition, we need to check that the projection which corresponds to left regular factor at
the zero ps coincides with the residue of the singular factor at the pole p̄s . It is true, according
to symmetry principle, because the scattering matrix is unitary on the real axis. Then the
zero ps and the pole p̄s can be collected into one factor, which gives the representation of the
rational expression

Sβ(p) = 2i − β01mβ10

2i + β01mβ10
=

2i − β01
I+A2

A−pI
β10

2i − β01
I+A2

A−pI
β10

(7)

with vector zeros (ps, νs) with root vectors νsSβ(ps)νs = 0 in the upper half-plane Im ps > 0,
in form of the Blaschke–Potapov product:

Sβ(p) =
∏

s

[
p − ps

p − p̄s

Ps + (I − Ps)

]
.

The orthogonal projections Ps in E depend on the order of factors, see the discussion in the
end of next section.

Note that the constructed model has all features of the Lax–Phillips scattering system, see
[35], and it can serve as a simplest nontrivial model of such a system.

3. Analytic perturbation procedure and the intermediate operator

We begin with a general statement concerning resonances.

Lemma 3.1. If the condition (6) is fulfilled, then the zeros of the scattering matrix resonances
depend analytically on the boundary parameter β01 and may be found for small values of the
parameter via analytic perturbation procedure.

Proof. It is based on the matrix version of Rouché theorem by Gohberg and Sigal, see [36]
and the appendix below, where the simplest version of this general fact is quoted. We consider
here only the generic case when all eigenvalues αs of the operator A are simple. Denoting by
qs = es〉〈es the corresponding eigenprojections, we may present the function in the numerator
of the scattering matrix as

β01P
I + A2

A − pI
Pβ01 =

∑
s

1 + α2
s

αs − p
εsQs, (8)

where Qs = νs〉〈νs is an orthogonal projection onto the one-dimensional subspace spanned by
β01Pes = ‖β01Pes‖νs and εs = ‖β01Pes‖2. We assume that ε = (ε0, ε1, ε3, . . .) is a non-zero
vector. We will use ε as a perturbation parameter instead of the matrix β01. Our immediate
aim is to calculate the resonance ps0 created from α0 at ε0 = 0, assuming that |ε| = max εs is
small.
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It is clear that an essential contribution to the above function (8) near the pole α0 is defined

by the nearest singular summand 1+α2
0

α0−p
ε0Q0. Planning to use the Gohberg–Sigal theorem, see

the appendix, we introduce two functions

m(p) = 2i −
∑

s

1 + α2
s

αs − p
εsQs and m0(p) = 2i − 1 + α2

0

α0 − p
ε0Q0,

m−1
0 (p) = 1

2i

(
I − Q0

iε0
1+α2

0
2

α0 + iε0
1+α2

0
2 − p

)
,

and their ratio

m−1
0 (p)m(p) = I − m−1

0

∑
s 	=0

1 + α2
s

αs − p
εsQs := I − m−1

0 m0.

Zeros of the function m coincide with resonances. The only zero of the function m0 sits at

α0(ε) = α0 + iε0
1+α2

0
2 . Consider a circle 
0 with radius δ centred at α0(ε). The ratio m−1

0 m0

can be estimated on the circle 
0 = {p :
∣∣α0 + i ε0

2 − p
∣∣ = δ

}
as

∥∥m−1
0 m0

∥∥ � 1

2

[
1 + ε0

1 + α2
0

2

]∑
s 	=0

εs

|αs − α0| − δ
, (9)

hence it is small for small |ε| + δ � min |α0 − αs |. Both functions m,m0 are analytic inside
the circle 
0, hence, due to Gohberg–Sigal theorem, the function m has zeros inside 
0 with
the total multiplicity M0 = dim Q0. In particular, it has only one simple zero, if M0 = 1.

We continue our reasoning by assuming that M0 = 1. Then the function m−1 =[
I − m−1

0 m0
]−1

m−1
0 has only one pole p0(ε), which will be found by integration of m−1

on the circle 
0.
Consider the left factorization of the function m at the resonance p0(ε):

m(p) = ([p − p0(ε)]P+
0(ε) + b(ε)

(
I − P+

0

))
µ̂(p) := m+

0µ̂(p). (10)

Here P+
0 is the orthogonal projection onto the null-space of m+ at the point p0(ε) (‘left’ null-

space of m : P+
0m (p0(ε)) = 0. The residue of the function m−1 at p0(ε) is calculated as an

integral of m−1 = [
I − m−1

0 m0
]−1

m−1
0 = µ̂−1m+

0
−1 on the circle. The representation (10)

gives the formula

1

µ̂ (p0(ε))
P+

0(ε) = 1

2π

∮

0

1

µ̂(p)

(
P+

0(ε)

[p − p0(ε)]
+

(
I − P+

0(ε)
)

b(ε)

)
dp. (11)

On the other hand, the residue can also be found via integration of another expression for
m−1(p) on the circle:

1

2π

∮

0

[(m0(p))−1 + (m0(p))−1m0(p)(m0(p))−1 + · · ·] dp. (12)

The series in the integrand is converging geometrically, and each term of it is calculated by
residues at the pole α0ε. For instance,

1

2π

∮

0

(m0(p))−1 dp = 1

2π

∮

0




1

2i


 α0 − p

α0 + i
ε0

(
1+α2

0

)
2 − p


Q0 +

1

2i
[I − Q0]


 dp

= ε0
1 + α2

0

2
Q0.
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The next terms contain derivatives of m0 at the pole α0ε = α0 + i ε0(1+α2
0 )

2 . The structure of the
whole expansion is similar to the expansion by residues which arises in the standard Feynman
diagram technique, because the idea of calculation of the residue based on the use of two
different forms of the integrand is the same as in the Feynman case, see [37]. Comparing the
series (12 with 11) we obtain the representation of P+

0 in the form of geometrically convergent
series.

The analyticity of the projection P+
0(ε) as a function of ε follows from the geometrical

convergence of the series in the integrand of (12).
The orthogonal projection P +

0 (ε0) onto the null-subspace of m+ (p0(ε0)) is calculated, up
to a constant, as

P+
0(ε)

(
1

µ̂ − (p0(ε))

)+ 1

µ̂ − (p0(ε))
P+

0(ε) = Const P+
0(ε).

The zero p0(ε) of the function m can be obtained from the comparison of the previous integral
with the integral

1

2π

∮

0

p

µ̂ − (p)
dp = p0(ε)

µ̂ − (p0(ε))
P+

0(ε).

Thus both the resonance p0(ε) and the corresponding left root-vector ν+
0 are defined as analytic

functions of the boundary parameters. The right root-vector can be found in a similar way.
�

Assuming that the condition of the preceding theorem is fulfilled, consider the rational
representation of the stationary scattering matrix of the operator Pβ

Sβ(p) =
2i −∑s

1+α2
s

αs−p
εsQs

2i +
∑

s

1+α2
s

αs−p
εsQs

(13)

where Qs is the orthogonal projection onto the subspace spanned by the vector β01PNνs

obtained from the eigenvector νs of A via projection onto the deficiency subspace N =
Ni , followed by application of the linear boundary map β01. The scattering matrix is
presented, for a small ε, in the form of Blashke–Potapov product with simple Blaschke
factors Bs , ∏

s

{[
p − ps(ε)

p − p̄s(ε)

]
Ps + P ⊥

s

}
=:
∏

s

Bs. (14)

Theorem 3.2. Each Blaschke factor in (14) is an analytic function of both variables (p, ε) on
the product of a small neighbourhood of the origin in ε-space and a complement of a small
neighbourhood of the corresponding point αs of creation of the resonance ps(ε) in p-space.
In particular, selecting B0 = Sε

0 as the first factor on the right-hand side, we obtain the
factorization of the scattering matrix in the form of two factors,

Sε = S0
ε S

ε
0, (15)

with the left factor analytic with respect to (ε, p) on a small neighbourhood of (0, α0), and
the right factor non-analytic on that neighbourhood, since p0(ε), p̄0(ε) → α0 if ε → 0.

The non-analyticity of the factor Sε
0 causes the non-analyticity of the whole product, and

it corresponds to the fact of the non-analyticity of the scattering matrix with respect to the
perturbation parameter at the ‘threshold of creation of resonances’.
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Remark (construction of Blaschke factors). If the scattering matrix is unitary on the real axis,
then the right Blaschke factors are constructed at each resonance

Sβ(p) = Bs(p)Bs(p), Bs(p) = p − ps(ε)

p − p̄s(ε)
Ps + [I − Ps] . (16)

The right Blaschke factors Bs(p) do not coincide with the corresponding Blaschke factors
Bs(p) in the above product (14), due to the non-commutativity of the factors. We suggest here
the procedure of construction of the factors Bs(p) once the factors Bs(p) are given.

Assume that the factors B0, B1, B2, . . . are ordered from the right to the left such that B0

is the first factor from the right, B1 is the second factor from the right, and so on. Denoting by
Ns , Ns the ranges of Ps , Ps , respectively, and by νs any vectors from Ns , we can write down
the following chain of equations

B0(p0) = B0(p0), N0 = N0, P0 = P0,

B1(p1)B0(p1)ν1 = 0, or N1 = B0(p1)N1,

B2(p2)B1(p2)B0(p2)ν2 = 0, or N2 = B1(p2)B0(p2)N2,

. . .

Bl(pl) · · · B2(pl)B1(pl)B0(pl)νl = 0 or Nl = Bl−1(pl) · · · B1(pl)B0(pl)Nl . (17)

We obtain the chain of one-dimensional subspaces if each product Bl−1(pl) · · · B1(pl)B0(pl)

of Blaschke factors does not degenerate on the corresponding subspace Nl :

Bl−1(pl) · · · B1(pl)B0(pl)νl 	= 0. (18)

Theorem 3.3. The condition (18) of transformation of the rational form of the scattering
matrix (13) into the Blashke product (14) is fulfilled for small values of the perturbation
parameter ε. Hence the stationary scattering matrix (13) can be represented in the form of
the Blaschke–Potapov product.

Proof. For small values of the perturbation parameter the imaginary parts Im ps of resonances
are small, hence each term in the previous chain of equations can be rewritten in the form

N1 =
[
I − i

2 Im p0

p1 − p̄0
P0

]
N1,

N2 =
[
I − i

2 Im p1

p2 − p̄1
P1

] [
I − i

2 Im p0

p2 − p̄0
P0

]
N2

· · ·
Nl =

[
I − i

2 Im pl−1

pl − p̄l−1
Pl−1

] [
I − i

2 Im pl−2

pl − p̄l−2
Pl−2

] [
I − i

2 Im p0

pl − p̄0
P0

]
Nl .

Then due to small Im p0 the operator
[
I − i 2 Im p0

p1−p̄0
P0
]

is invertible and hence N1 has the same
dimension as N1. The projection P1 exists. Then above argument may be applied to the
second equation, to find P2, and so on until all projections Pl are defined. �

Note that the structure of each Blaschke factor Bs shows that it has a zero at ps(ε), a pole
at p̄s(ε) and both of them approach the eigenvalue of the inner Hamiltonian when ε → 0. The
Blaschke factor B0 is not analytic with respect to (ε, p) near (0, α0) due to the convergence
of the zero and the pole of the factor to the same point α0. The Blaschke factor Bss 	= 0 is
analytic with respect to (ε, p) for small values of ε, since |p − αs | > δ > 0 for p close to
α0. The whole scattering matrix (16) is not analytic with respect to the perturbation parameter
near each eigenvalues αs of the ‘inner Hamiltonian ’ A due to the presence of the non-analytic
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factor Bs . Nevertheless, one may modify the perturbation procedure locally, eliminating, for
instance, the non-analytic factor Sε

0 := B0 via the ‘jump-start’: by introducing the intermediate
operator Pβ

0 , which is selected such that Sε
0 = B0 is the scattering matrix to the pair

(
Pε

0 ,P
)
.

Then the scattering matrix can be presented as a product of the non-analytic, but explicit factor
Sε

0 and the complementary analytic factor which is the scattering matrix to the pair
(
Pε,Pε

0

)
.

The construction of the intermediate operator is described below under the assumption that
we know the resonance p0(ε) and the corresponding resonance root-vector νε exactly. If we
know p0(ε) only asymptotically, as a finite power expansion in the perturbation parameter,
the corresponding approximate formulae are still valid, but the analyticity is lost. Practical
corollaries from this observation will be discussed elsewhere.

Note that the real and imaginary parts of the resonance can be expanded into convergent
power series of the real perturbation parameter ε, because of the analyticity of p0(ε). Hence
the real and imaginary parts of the resonance are also real analytic functions of the perturbation
parameter ε.

Theorem 3.4. For given Blaschke factor

Bε =
{[

p − p0(ε)

p − p̄0(ε)

]
P0 + P ⊥

0

}
,

with the one-dimensional projection P0 = νε〉〈νε consider the one-dimensional operator Aε
0

with the eigenvalue α0 = Re ps(ε). Select some normalized deficiency vector e ∈ K and the
boundary matrix

B =
(

β00 β01

β10 0

)
mapping e into E as

β01 =
√

2
Im p0(ε)

1 + α2
0

ν0(ε)〉〈e, ∗〉.

Choose β00 = −β01α0β
+
01. Then the model described by theorems 2.2, and 2.3. has the

scattering matrix Bε. The scattering matrix and the scattered waves of the model are found
based on the ansatz (3),

Ψ =
(

�(x)

α0+i
α0−p

η+e

)

via eliminating η+ from the boundary conditions with η− = − 1+α0p

α0−p
η+.

Proof. The scattering matrix for the constructed operator is calculated as in (7):

S(p) =
2i − 1+α2

0
α0−p

β01〉〈β01

2i + 1+α2
0

α0−p
β01〉〈β01

.

Multiplying by (p − α0) and dividing through 2i, we transform the latter expression into

p − α0 − i (1+α2)

2 |β01|2
p − α0 − i (1+α2)

2 |β01|2
P0 + P ⊥

0 = P ⊥
0 +

p −
(
α0 + i|β01|2 1+α2

0
2

)
p −

(
α0 − i|β01|2 1+α2

0
2

)P0,

where P ⊥
0 is the orthogonal projection onto the complement of the null-space of the Blaschke

factor Bε. Substituting here the data α0(ε) = Re p0(ε), |β01|2 1+α2
0

2 = Im p0(ε), we obtain the
Blaschke factor Bε. �
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Remark. Eliminating the variables η± of the inner space we obtain in the outer space
L2(R,E) the spectral problem with the boundary conditions at the origin containing the
spectral parameter p:

ξ− = − 2 Im p0(ε)

Re p0(ε) − p
P0ξ+. (19)

In the scalar case the boundary condition is just scalar. The corresponding stationary scattering
matrix coincides with the Blaschke factor Bε.
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Appendix

Let E0 be a proper subspace of the finite-dimensional Hilbert space E, P0 be an orthogonal
projection onto E0 and P⊥

0 = I − P0 be the projection onto the orthogonal complement
E⊥

0 = E � E0. We state that the analytic matrix function m defined on the domain Dm

has a simple isolated right vector zero at the point p0 ∈ Dm, if it may be represented in a
neighbourhood U0 ⊂ Dµ as a product

m(p) = µ0(p)
[
(p − p0)P0 + bP⊥

0

]
(A.1)

with some non-zero constant b, the right orthogonal projection P0 onto the corresponding right
root-subspace E0 and an invertible near p0 analytic matrix function µ0(p)

µ0(p) = µ0(p0) +
p − p0

1!
µ′

0(p0) + · · · , Ker µ0(p0) = 0.

Multiple zeros are defined similarly to (A.1), with several right factors containing possibly
different projections. One can define in a similar way the left vector zero and the corresponding
left projection based on the factorization

m(p) = [(p − p0)P+
0 + bP⊥

0

]
µl

0(p), (A.2)

with invertible µl
0(p0). For finite-dimensional square matrix functions the left and right

vector zeros coincide and dim P0 = dim P+
0 due to the Fredholm theorem. The vectors

e0, e+
0 ∈ N0, N+

0 from the corresponding null-subspaces are called, respectively, right and left
root-vectors, m(p0)e0 = 0,m+(p0)e+

0 = 0. For vectors e⊥ from the complementary subspace
e⊥ ∈ E0⊥ we have m(p0)e⊥ 	= 0. Similarly, the simple isolated vector pole is defined: we
state that the function m has a simple isolated vector pole at the point p0 if it is represented as

m(p) = µ

[
P0

p − p0
+ bP⊥

0

]
(A.3)

with a non-zero constant b, an orthogonal projection P0 onto proper subspace N0 ⊂ E, the
complementary projection P⊥

0 and an analytic invertible function µ in a neighbourhood U0

of the point p0 ∈ Dm. Similarly the left poles are defined, which coincide with right poles
in the finite-dimensional case. Both isolated poles and zeros of analytic matrix functions are
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called in [36] characteristic values of the argument µ. The logarithmic residue of the function
µ at the simple isolated zero or pole is defined as an integral of the logarithmic derivative
m′(p)m−1(p) on a simple smooth curve �0 ⊂ U0 in anti-clockwise (‘positive’) direction
around the characteristic value m0:

Im,p0 = 1

2π i

∮
�0

m′(p)m−1(p) dp.

In [36] the period of the logarithmic derivative m′(p)m−1(p) on the simple cycle �0 ⊂ U0

containing no other characteristic points (zeros, poles) inside

Mm,p0 = 1

2π i
Trace

∮
�0

m′(p)m−1(p) dp.

is called the ‘multiplicity’ of the characteristic value. Straightforward calculation of the above
integrals gives the following result, in the case of only two factors present in A.1.

I (m, p0) = 1

2π i

∮
�0

m′(p)m−1(p) dp

= 1

2π i

∮
�0

µ(p)P0
[
(p0 − p)P0 + bP⊥

0

]−1
µ−1(p) dp

= 1

2π i
µ(p0)

∮
�0

P0
[
(p0 − p)P0 + bP⊥

0

]−1
dp µ−1(p0) = µ(p0)P0µ

−1(p0),

and

Mm,p0 = ±dim P0,

where the sign ± is defined by the type of the characteristic value: plus for zero, minus for
pole. For general formula see [36].

Theorem A.1. If two finite square matrices m,m0 depend analytically on the parameter p in
the disc D radius δ centred at the point p0, and m0 has only one characteristic point p0 at the
centre of the disc with the multiplicity M0, both functions have no characteristic values on the
circle 
0 = {p : |p − p0| = δ}, and the inequality

maxp∈
0

∥∥m−1
0 (p)

[
m(p) − m0(p)

]∥∥ < 1

is fulfilled, then the total multiplicity M1 of characteristic values of the function m inside the
circle 
0 is equal to the multiplicity M0 of the characteristic value of the function m0.

We actually need in the above text, section 3, a partial statement concerning the case when
M0 = 1. A formulation and proof of a much more general statement concerning analytic
functions with multiple poles and zeros can be found in [36].
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